Designs: Large N Studies and Mixed-Methods Designs

Data Structures for Large N Studies:

- (1) Cross-sectional designs
 - One time point
 - Used to analyze level differences in aggregates (such as countries)
- (2) Time-series designs
 - Repeated time points
 - Used to analyze changes over time

Subtypes of (2):

(a) Panel designs

Variables are measured at different time points based on the same cases/the same sample to analyze individual changes over time

(b) Trend designs

Variable are measured at different time points based on different cases/different samples from the same universe of cases to analyze aggregate changes over time (can be understood as a series of cross-section analyses) _____

Visualization of different Data Structures

Untersuchungseinheiten

Clear hierarchy regarding amount of information between the three types of design:

panel designs > trend designs > cross-sectional designs

▶ Panel designs can do everything the other two can (e.g. aggregate changes and level differences) but not the other way round.

Problems of Panel Data

- (1) Choice of design depends on the research question.

 Despite the hierarchy of information, panel data are not always a good choice (Illustration: research on the effects of institutions).
- (2) Also, measurement problems might "eat up" the additional information:
 - (a) Panel designs are based on an original sample of cases. If the population changes over time, a trend design is advisable.
 - (b) Panel mortality may result in too few original cases over time.
 - (c) A cross-sectional design may be better (compared to panel and trend designs) when changes are very small and cannot be distinguished from measurement error.

Application

- Panel and trend designs can most powerfully be employed with micro data for longer time spans
- Institutionally oriented country-comparing research is normally based on cross-sectional designs
- But multi-level analysis is increasingly used in political science, combining micro and macro-level data and related designs.

Distinction between data structures in terms of designs and types of data

Usual usage of data:

Design type	Data used
Cross-sectional designs	cross-sectional
Trend designs	cross-sectional and trend data
	panel data
Panel designs	+ cross-sectional data
	+ trend data

- This need not be the case, only if time point of measurement = time point of survey.
- They are not identical with regard to retrospective surveys.
- Illustration: retrospective surveys in a cross-sectional design generates panel data (e.g. exit poll survey on voter volatility)
- Problem: reliability of data.

Types of data

Data Type	N	T	example
Cross- sectional data	>1	=1	a_{t1} , b_{t1} , c_{t1}
Trend data	=1	>1	a _{t1} , a _{t2} , a _{t3}
Panel Data	>1	>1	a_{t1}, a_{t2}, a_{t3} b_{t1}, b_{t2}, b_{t3} c_{t1}, c_{t2}, c_{t3}
Event Data	>1	>1, with varying intervals: time points not exogenously fixed but endogenously determined by events	An event is defined as a change of status of research objective.

Practical guideline

- 1. formulation of hypothesis
- 2. type of data that fits the empirical test of hypothesis
- 3. type of design that fits the generation of reliable and valid data